Lista 3 de Álgebra Linear – Espaços Vetoriais

- 1) Verifique se cada um dos conjuntos abaixo é um espaço vetorial com as operações usuais:
- a) $S_1 = \{ (x, y) \in \mathbb{R}^2 : y = -x \}$
- b) $S_2 = \{ (x, y) \in \mathbb{R}^2 : y = x + 1 \}$
- c) $S_3 = \{ (x, y, z) \in \mathbb{R}^3 : x + y z = 0 \}.$
- 2) Considere os vetores $\overrightarrow{v_1} = (1, 2), \ \overrightarrow{v_2} = (2, -1), \ \overrightarrow{v_3} = (0, 2), \ \overrightarrow{v_4} = (3, -2, 1), \ \overrightarrow{v_5} = (0, 1, 0)$ e $\overrightarrow{v_6}$ = (1, 1, 0). Determine se são LI ou LD os vetores
- a) $\overrightarrow{v_1}$ e $\overrightarrow{v_2}$
- b) $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ e $\overrightarrow{v_3}$

- 3) Verifique quais dos seguintes conjuntos formam uma base para o R²:
- a) { (1,2), (-1,3) }
- b) { (0,0), (2,3) }
- c) { (3,-1), (2,3) }
- d) { (3,-1), (-6,2) }
- 4) Para que valor(es) de k o conjunto { (1,k), (k,4) } é base do R²?
- 5) Considere os vetores $\overrightarrow{v_1} = (1, 0, -1), \overrightarrow{v_2} = (1, 2, 1)$ e $\overrightarrow{v_3} = (0, -1, 0)$ do R³.
- a) Mostre que A = $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ é base do R³.
- b) Escreva $\overrightarrow{e_1} = (1, 0, 0), \ \overrightarrow{e_2} = (0, 1, 0) \ e \ \overrightarrow{e_3} = (0, 0, 1)$ como combinação linear dos vetores da base A.
- 6) Considere os conjuntos abaixo:

$$A = \{ (x, y) \in R^2 : x + y = 0 \}; B = \{ (x, y, z) \in R^3 : z = 0 \} e C = \{ (x, y, z) \in R^3 : y = 5x e z = 0 \}.$$

- a) Verifique que A é um subespaço de R² e que B e C são subespaços de R³.
- b) Determine uma base para cada um desses conjuntos e determine a dimensão de cada um deles:

7) Considere os vetores $\overrightarrow{v_1}$ = (1, 2, 0), $\overrightarrow{v_2}$ = (2, -1), $\overrightarrow{v_3}$ = (-4, 2), $\overrightarrow{v_4}$ = (3, -2, 1) e $\overrightarrow{v_5}$ = (0, 1, 0).

Determine os espaços gerados por:

- a) $\overrightarrow{v_1}$
- b) $\overset{\rightarrow}{v_2}$ e $\overset{\rightarrow}{v_3}$
- c) $\overset{\rightarrow}{v_4}$ e $\overset{\rightarrow}{v_5}$
- d) Qual é a dimensão de cada um dos espaços dos itens anteriores?

Respostas:

- 1) a) É espaço vetorial.
 - b) Não é espaço vetorial.
 - c) É espaço vetorial.
- 2) a) $\overset{\rightarrow}{v_1}$ e $\overset{\rightarrow}{v_2}$ são LI.
 - b) $\overset{\rightarrow}{v_1}$, $\overset{\rightarrow}{v_2}$ e $\overset{\rightarrow}{v_3}$ são LD.
 - c) $\overset{\rightarrow}{v_4}$ e $\overset{\rightarrow}{v_5}$ são LI.
 - d) $\overrightarrow{v_4}$, $\overrightarrow{v_5}$ e $\overrightarrow{v_6}$ são LI.
- 3) Os conjuntos dos itens a) e c) formam uma base para o R².
- 4) Para $k \neq 2$ ou $k \neq -2$.
- 5) a) Mostre que A é LI (um dos caminhos para mostrar isto nos leva a um sistema 3x3 homogêneo) e depois mostre que A gera R³, isto é, mostre que qualquer vetor do R pode ser escrito como combinação linear dos vetores de A(mais uma vez, um dos caminhos para mostrar isto nos leva a um sistema 3x3).

b)
$$\vec{e}_1 = \frac{1}{2} \vec{v}_1 + \frac{1}{2} \vec{v}_2 + \vec{v}_3$$
;

$$\overrightarrow{e_2} = -\overrightarrow{v_3}$$

$$\vec{e}_3 = -\frac{1}{2}\vec{v}_1 + \frac{1}{2}\vec{v}_2 + \vec{v}_3$$

6) b) Para o conjunto A:

Uma possível base é o conjunto unitário { (1,-1) } (existem infinitas bases para A. Além disso, toda base de A é unitária e é formada por um vetor paralelo ao vetor (1,-1)).

Como uma possível base possui apenas um elemento, a dimensão de A é 1.

Para o conjunto B:

Uma possível base é o conjunto unitário { (1,0,0), (0,1,0) } (existem infinitas bases para B).

Como uma possível base possui dois elementos, a dimensão de A é 2.

Para o conjunto C:

Uma possível base é o conjunto unitário { (1,5,0) } (existem infinitas bases para C. Além disso, toda base de C é unitária e é formada por um vetor paralelo ao vetor (1,5,0)).

Como uma possível base possui apenas um elemento, a dimensão de C é 1.

- 7) a) $\{(x,y,z) \in \mathbb{R}^3 \mid (x,y,z) = t(1,2,0), \text{ para algum } t \in \mathbb{R} \}$, ou seja, o espaço gerado por $\overset{\rightarrow}{v_1}$ é o conjunto formado por todas as combinações lineares do vetor $\overset{\rightarrow}{v_1}$, isto é, todos os vetores da forma t(1,2,0), para algum $t \in \mathbb{R}$. Este conjunto é a reta que passa pela origem e que possui a direção de $\overset{\rightarrow}{v_1}$.
- b) Podemos dizer que o espaço gerado por $\overset{
 ightarrow}{v_2}$ e $\overset{
 ightarrow}{v_3}$ é o conjunto

$$\{(x,y) \in R^2 \mid (x,y) = t(2,-1) + s(-4,2), \text{ onde } t,s \in R \},\$$

ou seja, o espaço gerado por $\overrightarrow{v_2}$ e $\overrightarrow{v_3}$ é o conjunto formado por todas as combinações lineares dos vetores $\overrightarrow{v_2}$ e $\overrightarrow{v_3}$, isto é, todos os vetores da forma t(2,-1) + s(-4,2), onde t,s \in R.

Também podemos notar que $\overrightarrow{v_2}$ e $\overrightarrow{v_3}$ são múltiplos um do outro (são paralelos), ou seja, $\overrightarrow{v_2}$ e $\overrightarrow{v_3}$ são LD. Logo, precisamos apenas de um deles para gerar o espaço gerado pelos dois, uma vez que um pode ser escrito com combinação linear do outro.

Portanto, uma possível representação do conjunto gerado por $\stackrel{
ightarrow}{v_2}$ e $\stackrel{
ightarrow}{v_3}$ é o conjunto

$$\{(x,y) \in R^2 \mid (x,y) = h(2,-1), \text{ para algum } h \in R \},\$$

ou seja, o espaço gerado por $\overset{
ightharpoonup}{v_2}$ e $\overset{
ightharpoonup}{v_3}$ é o conjunto formado por todas as combinações lineares do vetor $\overset{
ightharpoonup}{v_2}$, isto é, todos os vetores da forma h(2,-1), para algum h \in R. Este conjunto é a reta que passa pela origem e que possui a direção de $\overset{
ightharpoonup}{v_2}$. (No final da resposta, poderíamos usar o vetor $\overset{
ightharpoonup}{v_3}$ no lugar de $\overset{
ightharpoonup}{v_2}$.)

c) O espaço gerado por $\stackrel{
ightarrow}{v_4}$ e $\stackrel{
ightarrow}{v_5}$ é o conjunto

$$\{(x,y,z) \in \mathbb{R}^3 \mid (x,y,z) = t(3,-2,1) + s(0,1,0), \text{ onde } t,s \in \mathbb{R} \},$$

ou seja, o espaço gerado por $\overrightarrow{v_4}$ e $\overrightarrow{v_5}$ é o conjunto formado por todas as combinações lineares dos vetores $\overrightarrow{v_4}$ e $\overrightarrow{v_5}$, isto é, todos os vetores da forma t(3,-2,1) + s(0,1,0), onde t,s \in R. Este espaço é o plano que passa pela origem e que possui $\overrightarrow{v_4}$ e $\overrightarrow{v_5}$ como vetores diretores. (Observe que $\overrightarrow{v_4}$ e $\overrightarrow{v_5}$ são LI. Por isso eles geram um plano e não um reta como foi no item anterior.)

d) Os espaços dos itens a) e b) possuem dimensão 1 e o espaço do item c) possui dimensão dois.